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Abstract
While it is widely recognized that extreme fires have been increasing underwarming and drying
climate, knowledge regarding themagnitude and intensity of extreme fires is very limited.Moreover,
fire emissions reported by existing emissions inventories show large discrepancies due to different
approaches and parameters. In this study, we analyzed the fire intensity and emissionsmagnitude of
the 2019–2020Australian bushfires usingfire observations frommultiple satellites. The results show
that the bushfires were extreme in both their number and intensity, whichwere higher by a factor of 25
and 19, respectively, compared to the past two-decade seasonalmean. The 2019–2020 bushfires
burned a total of 112.3 Tg biomass and released 178.6±13.6 TgCO2 (carbon dioxide), 1.71±1.28
Tg PM2.5 (particulatematter with a diameter<2.5μm), and 0.061±0.04 TgBC (black carbon)
across eastern and southernAustralia. TheCO2 emissions are 35%of Australia’s greenhouse
emissions from all sectors combined in 2020. Furthermore, the extreme fires in themost severe day
and hour released 10%and 1.4%of the entire seasonal emissions, respectively. Ourfindings provide
quantitative information for investigating the impacts of smoke emissions on air quality, ecosystem,
and climate.

1. Introduction

Australia’s 2019–2020 bushfire season greatly impacted communities, human health, the economy, and
ecosystems (Filkov et al 2020, Bowman et al 2020a, Johnston et al 2021). The bushfires destroyedmore than
9,000 buildings, resulting in at least 33 direct deaths (Filkov et al 2020).Meanwhile, smoke fromfires blanketed
eastern and southern states and substantially degraded air quality, causing exposure ofmore than 10million
people to hazardous air formonths, thousands of hospitalizations, and∼400 deaths indirectly (AIHW2020,
Johnston et al 2021). The bushfires disturbed ecosystems by burning flora, killing fauna, and devastating habitat
(Ward et al 2020).

The 2019–2020 bushfires exhibited record-breaking fire characteristics (Boer et al 2020,Nolan et al 2020,
Hirsch andKoren 2021). The bushfires scorched approximately 10million ha across eastern and southern
Australia (Bowman et al 2020a), where two eucalyptus forest dominated ecoregions (the temperate broadleaf
andmixed forest ecoregion (TBMF) and themediterranean forest, woodland and scrub ecoregion (MFWS)) are
located. The burned areawas larger by a factor of eight than the average for the past two decades, and likely
topped the 170-year fire records since 1850 (Bowman et al 2020a).Meanwhile, the bushfires consumed a vast
amount of fuels (Nolan et al 2020) and emittedmassive amounts of greenhouse gases and aerosol emissions
(Bowman et al 2020a,Hirsch andKoren 2021). Further, the bushfires generated∼33fire thunderstorms or
pyrocumulonimbus clouds (pyroCbs) during the fire season (Kablick et al 2020, Bowman et al 2020b), which is
very rare (Peterson et al 2018). Additionally, the bushfires injected smoke plumes into the stratosphere at an
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altitude that wasmuch above the previous record observed in the 2017westernCanadianwildfires (Peterson
et al 2018, Yu et al 2019). The record-breaking injection heights of smoke plumeswere attributed partly to very
intense fires burning for a long period over large areas and a very large amount offire emissions (Hirsch and
Koren 2021). The smoke plumeswere also transported as far as to Southern SouthAmerica and theAntarctic in
less than 10 days as observed by satellites (González et al 2020).

The record-breaking 2019–2020Australian bushfire season undoubtedly challenged our existing knowledge
of extreme fires. It provided uswith a unique opportunity to establish a robust system for bettermodeling the
interactions between fire activity and climate (Flannigan et al 2009), forecasting air quality, understanding
smoke-related public health burden (Black et al 2017), andmaking sound policies and strategies to build fire-
resilient communities (Moritz et al 2014) and conserve biodiversity (Ward et al 2020). To reach this goal, it is
critical to quantify the intensity of biomass burning and themagnitude of carbon loss and smoke emissions
injected into the atmosphere during this extreme fire event.However, long-term routinemonitoring is lacking
(Bowman et al 2020a). Although only two decades of high-quality satellitefire data are available, it is important
to put the 2019–2020fire season in Australia’s historical context.

Therefore, this study attempted to examine anomalies in the fire intensity and quantify themagnitude of
biomass-burning emissions for the 2019–2020 bushfires using fire radiative power (FRP) observed from
multiple satellites. FRP, which reflects the instantaneous radiative energy emitted from fires, is a good proxy for
characterizing fire intensity (Archibald et al 2013, Laurent et al 2019). Furthermore, FRP can be effectively used
to estimate biomass-burning emissions with a combustion coefficient or a smoke coefficient (Ichoku and
Kaufman 2005,Wooster et al 2005, Li et al 2020b). The FRP-basedmethod has fewer sources of uncertainties in
fire emissions estimation, relative to the conventionalmethod that requires burned area, fuel loadings,
combustion completeness and emission factors (Seiler andCrutzen 1980). The uncertainties of all the
parameters in the conventionalmethod greatly limit the accuracy of emissions estimates (Liu et al 2020). For
example, the commonly usedMODIS burned area product forfire emissions inventories (e.g., Global Fire
EmissionsDatabase (GFED)) is underestimated by 80% for African savannafires (Roy et al 2019). Fuel loading
data have even large uncertainties (Zhang et al 2008). Although several existing fire emissions inventories report
emissions estimates for globalfires routinely, accuracy of these emissions data remains to be fully validated as

Figure 1.Maps of Australia’s ecoregions (A) and forests (B).
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they show a discrepancy by a factor of 4–7 due to different assumptions and input data (Carter et al 2020, Pan
et al 2020). For FRP-based emissions estimates, their accuracy depends largely on accurate estimation offire
radiative energy (FRE)—the temporal integration of FRP over a period, which requires high temporal resolution
FRP to construct fire diurnal cycles (Freeborn et al 2009, Zhang et al 2012). All the currently available FRP-based
emissions inventories (e.g., Quick Fire EmissionsDataset (QFED2.4), Fire Energetics and Emissions Research
(FEER1.0), Global Fire Assimilation System (GFAS1.2), and BlendedGlobal Biomass Burning Emissions
(GBBEPx3.0)), however, use FRP, instead of FRE, frompolar-orbiting sensors (e.g.MODIS) by simply assuming
that FRP retrievals at a few satellite overpass times could represent diurnal fire activity (Darmenov and
Silva 2015, Ichoku and Ellison 2014, Kaiser et al 2012,Zhang et al 2019). High spatiotemporal resolution FRP,
which is not available from any single orbiting satellite, can be calculated by fusing high temporal resolution FRP
fromgeostationary sensors andfine spatial resolution FRP frompolar-orbiting sensors (Freeborn et al 2009, Li
et al 2019, Zhang et al 2012, 2020). Thismotives this study to calculatefire emissions for the 2019–2020 bushfires
by fusing thefinest spatial and highest temporal resolution FRP observations that are available from the new
generation satellite sensors.

2.Methods

Wefirstmeasured the intensity of the 2019–2020Australian bushfires by examining anomalies infire intensity
using two-decade 1 kmFRPobservations from theModerate Resolution Imaging Spectroradiometer (MODIS)
becauseMODIS onboard both Terra andAqua satellites provides the longest consistent FRP records of scientific
quality since 2002 (Giglio et al 2016). Then, we computed biomass consumption and fire emissions for the
2019–2020 bushfires by fusing thefinest spatial resolution (375m) FRP from theVisible Infrared Imaging
Radiometer Suite (VIIRS) instrument and high temporal resolution (10 min) FRP from theAdvancedHimawari
Imager (AHI) at a spatial resolution of 2 km. Fire products and FRP from these sensors are introduced in detains
in section 2.3.

2.1. Australia’s ecoregions and forestmap
Australia’s terrestrial ecoregions were used to group fire activity. The terrestrial ecoregionmap (figure 1(A),
https://www.environment.gov.au/land/nrs/science/ibra/australias-ecoregions, last accessed on 2/4/2021) is
developed by the Australian government department of Sustainability, Environment,Water, Populations, and
Communities based on climate and vegetation. There are sevenmain ecoregions: (1) tropical broadleaf forest
(TBLF), (2) tropical and subtropical grasslands, savannas and shrublands (TGSS), (3) deserts and xeric
shrublands (DXES), (4) temperate broadleaf andmixed forest (TBMF), (5)mediterranean forest, woodland and
scrub (MFWS), (6) temperate grasslands, savannas and shrublands (TEGS), and (7)montane grasslands and
shrublands (MOGS). Because theMOGS ecoregion has a very small area and is located inside the TBMF
ecoregion, for the sake of simplicity wemergedMOGS ecoregion into the TBMF ecoregion.

We adopted the latest Australian national forestmap (a spatial resolution of 100m) fromAustralia’s State of
the Forests Report 2018 (ABARES 2018). Thismap (figure 1(B))was used to stratify biomass consumption and
emissions frombushfires in forest and non-forest areas.

2.2. Three biomass-burning emissions inventories
Globalfire emissions fromGFASv1.2, GFED4s, and Fire INventory fromNCAR (FINNv1.5 and v2.4)were
collected to comparewith our emissions estimates in this study. TheGFASv1.2 estimates daily globalfire
emissions usingMODIS FRP, biomass combustion coefficient, and emissions factors (Kaiser et al 2012). The
GFED4s computes fire emissions usingMODIS burned area data,modeled fuel loadings, combustion
completeness, and emission factors (van derWerf et al 2017). After 2017, theGFED4s emissions are estimated
usingMODIS fire detections and empirical relationship betweenMODIS fire detections and historical GFED4s
emissions estimates before 2017. Similarly, the FINNalso estimates emissions using the burned area and fuel
loading, where burned area in FINNv1.5 is derived fromMODIS activefire detections and fuel loading is based
on land cover types (Wiedinmyer et al 2011). According to the latest FINNReadme file (https://www.acom.
ucar.edu/Data/fire/data/finn2/README_FINNv22_November2020.pdf), the FINNhas been updated to
version 2.4 recently by considering both 1 kmMODIS and 375VIIRS fire detections for estimating burned area.
In this study, we obtainedGFASv12 (https://apps.ecmwf.int/datasets/data/cams-gfas/; last access on 24
August 2021), GFED4s (https://www.globalfiredata.org/, last access on 24August 2021), and both FINNv1.5
and v2.4 (http://bai.acom.ucar.edu/Data/fire/; last access on 24August 2021).We also includedCO2

emissions reported recently by Shiraishi andHirata (2021) for the 2019–2020 bushfires, whichwas calculated
using burned area estimated from1kmMODIS fire detections and fuel loading from global above ground
biomass (AGB)maps. This estimationwas simply called Shiraishi andHirata 2021 hereafter. The emissions
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inventories FEER andQFED,which are based on coefficients derived fromor tuned by aerosol optical depth
(AOD), were not included in this study because they are usually several times larger than other inventories
(Carter et al 2020, Pan et al 2020).

2.3. Satellite activefire data
Weused a two-decade record ofMODIS activefire data, which is the longest satellite-derived fire record of
scientific quality, to examine anomalies in the fire intensity of Australia’s 2019–2020 bushfires. TheMODIS
sensor onTerra (launched inDecember 1999) andAqua (launched inMay 2002) satellites detects actively
burning fires using the 4- and 11-μmbands approximately four times a day at 01:30, 10:30, 13:30, and 22:30
local time (Giglio et al 2016). The latest collection 6MODIS level-2 activefire products (abbreviatedMOD14
andMYD14 for Terra andAqua satellites, respectively) at 1-km spatial resolutionwere obtained fromNASA’s
Level-1 andAtmosphere Archive andDistribution System (LAADAS, https://ladsweb.modaps.eosdis.nasa.
gov/) for the period 2002–2020. It provides for eachfire detection the detection time, geolocation, detection
confidence, and FRP (Megawatt,MW) that is calculated using the radiance of the fire pixel and its ambient non-
fire pixels in the 4-μmband (Giglio et al 2016). The 4-μmband has a saturation temperature of∼500K that is
reached only for extremely powerful fires (Giglio et al 2003).

We fusedVIIRS andAHI activefire data to estimate emissions in the 2019–2020fire season. VIIRS onboard
both SuomiNational Polar-Orbiting Partnership (SuomiNPP, launched inOctober 2011) andfirst satellite of
the Joint Polar Satellite System (JPSS-01, subsequently namedNOAA-20, launched inNovember 2017) crosses
the equator at approximately 01:30 and 13:30 local time butNOAA-20VIIRS observes fires over the same area
∼50 min earlier. TheVIIRS activefire products at 375mpixels fromboth SuomiNPP andNOAA-20were
obtained fromNOAA’s Center for Satellite Applications andResearch (ftp://ftp.star.nesdis.noaa.gov/) for the
period fromNovember 2019—January 2020. Thesefire products provide for eachfire detection the detection
time, geolocation, confidence, persistent anomalyflag, and FRP (MW). The 375mVIIRS FRP is retrieved using
the co-located radiance of thefire pixel and its background non-fire pixels in the 4-μm750mband that has a
very high saturation temperature of 600K, which leads to far fewer saturated fire detections thanMODIS
(Csiszar et al 2014, Schroeder et al 2014).Moreover, the 375mVIIRS FRPhas the finest spatial resolution among
all existing satellite-based fire products. This resolution allows for the detection ofmanymore very small and
coolfires than theMODIS fire data at 1 km resolution (Csiszar et al 2014, Schroeder et al 2014, Li et al 2020a). For
example, in the 2019–2020fire season, a comparison of daily sumFRP from three sensors (AquaMODIS (1 km),
NPPVIIRS (375m), andNOAA-20VIIRS (375m))with close overpass times shows that theVIIRS sumFRP is
on average∼50%higher thanMODIS sumFRP (figure S1 (available online at stacks.iop.org/ERC/3/105005/
mmedia)). This is the reasonwhy 375mVIIRS FRPwas chosen to estimatefire emissions. The 375mVIIRS FRP
would also be a better choice for examining anomalies offire intensity if the data has a temporal coverage as long
as the two-decadeMODIS FRP.However, as a follow-on sensor ofMODIS, VIIRS provides FRP for less than 10
years, which is insufficient for the purpose of anomaly examination. As theMODIS fire detection algorithm
performs consistently for thewhole two-decade observation period, the comparison of seasonalmean FRP
during past two decades could reliably reveal interannual FRP anomalies (see section 2.3).

TheHimawari-8 AHI observes fires at 2 kmpixels across East and Southeast Asia andAustralia at a temporal
resolution of 10 min since 2015 (Bessho et al 2016). The official level-2 activefire product from JapanAerospace
ExplorationAgency (JAXA 2020) (available at JAXA’s P-tree systemFTP, ftp://ftp.ptree.jaxa.jp) detects fires
using the 4- and 11-μmAHI bands andwas updated from the Beta version to version 1.0 inOctober 2020
(JAXA 2020).We used the version 1.0 to screen the cloud edge and coastline related false alarms in the Beta
version, and calculated FRPusing the radiance of afire pixel and at its ambient non-fire background in the 4-μm
band in the Beta version (see details in subsection 2.3 ‘Examination of the Anomalies in FireNumber and
Intensity’).We did not use the FRP provided in version1.0, whichwas calculated using a bi-spectralmethodwith
radiance in the 4- and 2.3-μmbands (JAXA 2020). This is because it is very difficult to characterize non-fire
background using the 2.3-μmband due to its high sensitivity to non-fire hot surfaces (e.g., newly burned areas)
(Giglio et al 2008). Inaccurate characterization of non-fire background results in unreliable fire temperature and
fire size, which are the sub-pixel parameters required for calculating FRP in the bi-spectralmethod (Giglio and
Schroeder 2014).

2.4. Examination of theAnomalies infire number and intensity
The total number ofMODIS fire detections and summed FRP separately represent the extent of actively burning
fires andfire-emitted energy at observation times. Thus, these two parameters during the season ofNovember
2019—January 2020werefirst comparedwith those in the past 17 seasons from2002–2019. BecauseMODIS
pixel size enlarges as scan angle increases fromnadir to scan edge, which is known as the bow-tie effect that
causes sizeable overlapping between adjacent scans in off-nadir view angles (Wolfe et al 1998), adjacent scans can
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observe the same fire twice (Freeborn et al 2014, Li et al 2018b). Therefore, wefirst removed the duplicate fire
detections between consecutiveMODIS granules following themethod developed by Li et al (2018b). Then, for a
given ecoregion, the number of fire detections and FRPwere summedup for each season fromNovember of one
year to January of the next year during 2002–2020. Subsequently, the ecoregion-specific anomalies of the total
number offire detections and summed FRP for each seasonwere calculated by subtracting the corresponding
2002–2019means separately. Finally, the anomalies of the 2019–2020fire seasonwere comparedwith the past
seasons.

Considering FRP as a proxy offire intensity, we further investigated the extreme characteristics of fire
intensity during the 2019–2020fire season by comparingwith the past seasons.MODISfire detectionswith an
FRP>1,500MWare very rare globally,mostly observed in forest wildfires acrossNorthAmerican boreal
regions, thewesternUnited States, and eastern and southwestern Australia (Ichoku et al 2008). In eastern and
southwestern Australia,fire regimes are typically characterized by intense fires (Archibald et al 2013). To define
extreme FRP across Australia, wefirst examined the frequency distribution of the nearly two-decade FRP
retrievals offire pixels with a 4-μmbrightness temperature (BT)�500K that is the approximate saturation
temperature of theMODISmain fire detection band at 4μm (channel 21). Very strong thermal signals are
generally emitted fromvery powerful fires burning in a saturated fire pixel (Giglio et al 2003, Ichoku et al 2008).
Because the FRP frequency distributionwith a 4-μmBT�500K shows that themajority of the fire detections
have an FRP�1,600MW (FRP value at the peak of the frequency distribution, see figure S2), we defined
extreme fires using an FRP threshold of 1,600MW.Then, the extreme FRPwas further grouped into three
categories: (1) 1,600–2,500MW, (2) 2,500–5,000MW, and (3)>5,000MW. Finally, the number offire
detectionswith extreme FRP for the season fromNovember—January was summed up for three categories in
each ecoregion during 2002–2020. Additionally, the number of saturated fire detections (BT�500K)without
valid FRP retrievals was also counted for each season and ecoregion. This is because these detections should
theoretically have a valid FRP of at least 1,600MWaccording to the frequency distribution.

Because thefire activity duringNovember 2019—January 2020mainly occurred in the eucalyptus forest
dominated TBMF andMFWS ecoregions (figures 1 and 3), we only focused on these two ecoregions in
comparing extreme FRP and estimating biomass consumption and fire emissions as described in the following
subsection.

2.5. Calculation of biomass consumption andfire emissions
Biomass consumption and fire emissionswere estimated using diurnal FRP that was fused fromhigh temporal
AHI and high spatial VIIRS observations.

2.5.1. Calibrating AHI FRP against and Fusing withVIIRS FRP
TheAHI FRPwas calculated first using parameters provided in the Beta version of the AHIfire product. This is
because the FRP values in the version 1.0 AHIfire product are not reliable as described in section ‘Satellite active
fire data’. Specifically, the Beta versionAHIfire data were first refined by screening false alarms using version 1.0
AHIfire data andBT-based tests. By comparing AHIfire data withMODIS andVIIRSfire detections across
Australia during the study period, we found that false alarms in the Beta version fire data weremainly related to
cloud edges andwater edges (i.e., coastlines), whichwere removed in the version 1.0. Therefore, we excludedfire
detections that appeared only in the Beta version by referencing version 1.0. After removing the cloud- and
water-related false alarms, we further removed fire detections if they failed tomeet twoBT conditions
(BT4�280K andBT4–BT11�1K) by following the BT-based tests in the Fire Thermal Anomaly (FTA)
algorithm that was designed for theMeteosat SEVIRI (Spinning EnhancedVisible and InfraRed Imager) sensor
(Roberts andWooster 2008) and also applied successfully to AHI (Xu et al 2017). Note that BT4 andBT11 denote
brightness temperature in the 4- and 11-μmbands. As a result, a total of 24% fire detections were considered as
false alarms and excluded.

FRP at a 10-min interval was then calculated for the refinedBeta versionAHIfire detections using theMid-
Infrared (MIR)-radiancemethod (Wooster et al 2005):

FRP
A

a
L L 1f MIR b MIR, ,( ) ( )s

= -

where Lf MIR, and Lb MIR, are the radiance of anAHIfire pixel and the background non-fire pixels in the 4-μm
band, respectively; (Note that for a givenfire pixel, the associated background pixels were determined by
searching neighboring non-fire pixels in awindow, where thewindow size is determined usually by balancing
searching sufficient background pixels with algorithm run time). A is AHI pixel area; s is the Stefan-Boltzmann
constant (5.6704×10−8Wm−2 K−4); and a is a sensor-specific constant (a =3.0×10−9Wm−2 Sr−1μm−1

K−4). The 4-μmband radiancewas calculated fromBTof the same band using the AHI calibration table
(JMA 2015). The JAXA fire detection algorithm calculates background BTby averaging BT values of the non-fire
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background pixels in awindow centered at eachfire pixel (JAXA 2020). The backgroundBT varies between 280
K and 334K for AHIfire detections across the study area.Note that large difference in land cover type between a
fire pixel and its non-fire background pixels could cause bias in FRP estimates, which could happen in all active
fire products (e.g.,MODIS andVIIRS activefire products) that calculate FRP using theMIRmethod (Schroeder
et al 2010).

TheAHI FRP values at 2-kmpixels were further calibrated against the 375-mVIIRS FRP tomitigate the
underestimation of 2-kmAHI FRP due tomissing observation of small and/or coolfires. To do this, VIIRS and
AHI FRP retrievals were first aggregated to 0.25° grids separately. A grid size of 0.25°was chosen tomatch the
grid size of commonly used large-scale globalmodels, such asU.S. NWS (National weather Service) global
forecasting system, and air quality forecastmodels (Eastham and Jacob 2017) (Note that emissions can also be
generated at higher resolution for other applications). The griddedAHI FRPwas then calibrated using the
gridded and contemporaneous VIIRS FRP, where the contemporaneous FRPwas referred to as the FRP
observed by bothVIIRS andAHIwithin 5 min. Thus, the calculation equation is:

FRP FRP r1 2t
A

t
A

t( ) ( )= ´ +

where FRPt
A and FRPt

A are the griddedAHI FRP before and after adjustment at observation time t, respectively;
and rt is a calibration factor (unitless).

For each of grids where contemporaneous AHI andVIIRS FRPwere available, the calibration factor rt was
calculated for eachAHI observation time t (with FRP>0) by temporally interpolating ratios of the gridded FRP
differential (VIIRS FRP -AHI FRP) to AHI FRP linearly at two consecutive VIIRS observation times in a day (one
before t and the other after t). The calibration assumes that the underestimation of AHI FRP is proportional to
themagnitude of AHI FRP. The two consecutive VIIRS observation timeswere determined based on the times of
valid VIIRS observations, two for SuomiNPP and two forNOAA-20. If only oneVIIRS observation timewas
found for the periods before the earliest and after the latest VIIRS observation time, the ratio at the earliest or the
latest observation timewas used. Thus, the calibration factor rt varies spatially and temporally. Comparisons
between contemporaneous griddedVIIRS FRP andAHI FRP (before and after applying calibration) are
illustrated infigure S3.

VIIRS FRP and the calibratedAHI FRPwere fused as:

FRP w FRP w FRP 3t
f

t
A

t
V

1 2 ( )= ´ + ´

where FRPt
f is fusedAHI-VIIRS FRP; FRPt

A is the calibrated AHI FRP as in equation (2); FRPt
V is the gridded

VIIRS FRP at observation time t; and w1 and w2 are fusingweights.WhenVIIRS FRP is available, w 01 = and
w 1;2 = and if only AHI FRP is available, w 11 = and w 0.2 =

2.5.2. Calculating biomass consumption and emissions
FRP diurnal cycle was reconstructed subsequently for each grid by filling temporal gaps between valid fused FRP
values. AlthoughAHI observes fires every 10 min,fire-observing gaps appear occasionally due to obscuration by
clouds, smoke plumes, and forest canopies. FRP values in temporal gaps were filled by interpolating the adjacent
valid fused FRP. For grids where only VIIRS observed fires, whichweremostly too small/cool to be detected by
AHI, at a single observation time, we assumed conservatively thatfires had burned for one hour before and after
the observation time separately. As a result, hourly or dailyfire radiative energy (FRE,Megajoule (MJ))was
calculated by integrating the reconstructed FRP diurnal cycle:

FRE FRP dt 4
t

t

t
f

1

2
( )ò=

where FRPt
f is the fused FRP from equation (3) for a given grid; and t1 and t2 are thefirst and last observation

times of the reconstructed diurnal cycle, respectively.
Finally, biomass consumption andCO2, PM2.5, and BC emissionswere calculated as:

DM FRE B 5( )= ´

E DM F 6( )= ´

where E is the hourly or daily totalmass of an emission species (kg);DM is dry biomass consumed (kg); F is the
emission factor of the emission species (kg kg−1); FRE is from equation (4); andB is the FREbiomass combustion
coefficient (B=0.368 kgMJ−1) (Wooster et al 2005). Because emissions factor (especially for aerosols) reported
for Australia’s temperate forest is very limited, this study used emissions factors (CO2, PM2.5, and BC) that were
compiled byAndreae (Andreae 2019) based on recent studies of globalfire emissions factors and thewidely used
emissions factors compiled byAkagi et al (2011). Uncertainties in emission factors, which aremeasured typically
by standard deviation, are propagated to the associated emission estimates (equation (6)). Thus, standard
deviations of emission factors were applied to estimate uncertainties in emission estimates. To quantify
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emissions from forestfires, biomass consumption and fire emissionswere further classified into forest and non-
forest based onAustralia’s national forestmap (ABARES 2018).

The emissions estimates were comparedwith four different emissions estimates described in the section 2.2.
Tominimize the impact fromdifferent emissions factors, we used theCO2 emission factors close to three global
inventories (e.g.,<5% for temperate forest).

Figure 2.Anomalies infire number and summedMODIS FRP in thefire seasons from2002 to 2020 across Australia’s ecoregions.
Anomalies infire number and summed FRP in (A)–(B) the temperate broadleaf andmixed forest (TBMF) ecoregion, (C )–(D) the
mediterranean forest, woodland and scrub (MFWS) ecoregion, (E)–(F) the tropical and subtropical grasslands, savannas and
shrublands (TGSS) ecoregion, (G)–(H) the deserts and xeric shrublands (DXES) ecoregion, and (I)–(J) all ecoregions inAustralia. Red
and blue bars showpositive and negative anomalies, respectively. Eachfire season covers threemonths fromNovember to January
(next year). Temperate eucalyptus forests aremainly distributed in the TBMF andMFWS ecoregions. Note thatfire detection number
and summed FRPwere not shown for the tropical broadleaf forest ecoregion and the temperate grasslands, savannas and shrublands
ecoregion because fire activities were relatively limited during the study period.
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3. Results

3.1. Anomalies in FireNumber and Intensity
The 2019–2020 bushfires across the TBMF (temperate broadleaf andmixed forest) andMFWS (Mediterranean
forest, woodland, and scrub) ecoregions burned in away that has never been observed from the satellite record
of the past 17fire seasons from2002–2019 (simply called two decades hereafter), in terms of the number offires
andfire intensity (figure 2). In the TBMF ecoregion, fire activity was very limited in the past two decades, with a
meanMODIS fire detection number of 5,200 and amean summed FRP of 0.4 Terawatt (TW). However, the
2019–2020fire season had a total of 89,000fire detections and a summed FRP of 7.9 TW,whichwere higher by a
factor of 16 and 19 than the 2002–2019means, respectively. The only other extreme fire season inAustralia in
the past two decades occurred during the 2002–2003fire season. The 2019–2020fires were two timesmore
intense thanfires in the 2002–2003 seasonwith respect to both the number of fires and FRP.Moreover, the day
of 4 January 2020 had the highest number of daily fire detections (6800) and summed FRP (1.03 TW)
(figure 3(A)), which are 30%and 160%higher than themeans for the past two decades. Thismost severe day
accounted for∼8%and∼13%offire observations and summed FRP in the 2019–2020 season, respectively.
Additionally, fire observations on 4 January doubled relative to the prior day, and summed FRP increased by
300%correspondingly (figure 3(A)). Similarly, in theMFWS ecoregion, the 2019–2020fire season had a total of
14,300fire detections and summed FRP of 2.6 TW,which are higher by a factor of 4.5 and 6.4 than the
2002–2019means (2,600 and 0.35 TW), respectively. The highest number of daily fire detections (1060) and
summed FRP (0.3 TW)were observed on 2 and 8 January 2020, respectively, andwere approximately 40% and
86%of themeans for the past two decades (figure 3(B)).

The FRP during the 2019–2020fire season could bemuch higher if including the FRP fromMODIS
saturated fire observations.MODIS fire observations can be saturated in very intense burnings, resulting in no
valid FRPmeasurements. Therewere 14%ofMODIS saturatedfire detections during the three days (30 and 31
December 2019, and 4 January 2020) in the TBMF ecoregion, which led to the underestimation of summed FRP.
In theMFWS ecoregion, likewise, FRPwas underestimated on 19December 2019 and 3 January 2020 because
23%ofMODIS fire detectionswere saturated on these days.

In the TGSS (tropical and subtropical grasslands, savannas, and shrublands) andDXES (deserts and xeric
shrublands) ecoregions, however, fire activity in the 2019–2020 seasonwas lower relative to the past seasons
(figure 2). The total number offire detections for the 2019–2020 seasonwas∼5%and∼53% smaller than the
2002–2019means in these two ecoregions, respectively. The summed FRPwas also∼10%and 53% lower than
the 2002–2019means correspondingly.

Taking into account all ecoregions across Australia, the 2019–2020 season had 130%and 180%more fire
detections and summed FRP than themeans of the past two decades, respectively (figure 2). Compared to past
individualfire seasons, the anomaly of the 2019–2020 seasonwas slightly higher than the 2002–2003 season but

Figure 3.Daily number ofMODIS fire detections and sumFRP in (A) the TBMF (temperate broadleaf andmixed forest) and (B) the
MFWS (mediterranean forest, woodland and scrub) ecoregions duringNovember 2019—January 2020. Blue line represents fire
detection count and red line indicates daily sumFRP.
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muchhigher than other seasons. This was associatedwith the strongest anomaly in theDXES in the 2002–2003
season.

The number of extremefire observations in the 2019–2020 bushfires was also record breaking across the
TBMF andMFWS ecoregions (figure 4). Extreme fire observations refer tofire detections with an FRP value
greater than 1,600MW,where the FRP thresholdwas determined based on the FRP frequency distribution of
historicalfire records across Australia (see details inMethods). In the TBMF ecoregion, the number of extreme
fire observations during the 2019–2020 seasonwas 50%more than the total number of those for the past two
decades and larger by a factor of 19 than the seasonal average (figure 4(A)). Their difference of extreme fire
observationswas as high as a factor of 25 if including the saturated fire detections that theoretically had an
FRP�1,600MW.Compared to the second severest 2002–2003fire season, the number of extreme fire
observations for the 2019–2020 seasonwas higher by a factor of 2.4. Similarly, in theMFWS ecoregion, the
number of extreme fire observations during the 2019–2020 seasonwas higher by a factor of 10 than the seasonal
average for the past two decades and a factor of 2.5 than the second severest 2002–2003fire season (figure 4(B)).

3.2. Biomass consumption andfire emissions
Fire observations fromnew-generation sensors (VIIRS andAHI) allowed for the quantification of greenhouse
gaseous and aerosol emissions released from the 2019–2020 bushfires across the TBMF andMFWS ecoregions
(table 1). The bushfires consumed a total of 112.3 Tg dry biomass, which accordingly released a total of
178.6±13.6 Tg carbon dioxide (CO2), 1.71±1.3 Tg particulatematter with a diameter<2.5μm (PM2.5),
and 0.061±0.04 Tg black carbon (BC) emissions.

Eucalyptus forest fires contributed themost to emissions during the 2019–2020fire season (figure 5). The
large amounts of biomass consumption and emissions occurredmainly in eucalyptus open andwoodland forest
in TBMF,with a small portion in rainforest (northeasternNew SouthWales in TBMF,where fire activity is

Figure 4.The total number of extreme FRP (�1,600MW) observations during the fire season from2002 to 2020 in (A)TBMF
(temperate broadleaf andmixed forest) and (B)MFWS (mediterranean forest, woodland and scrub) ecoregions. Each season (or bar)
has up to four groups, with higher FRP representing a higher extreme level, with the gray part showing the number of saturated
detections without valid FRP but should have an FRP value greater than 1,600MWtheoretically (seeMethods).
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usually very limited), and eucalyptus woodland andmallee forest inMFWS. The bushfires in eucalyptus forest
across these two ecoregions consumed a total of 103.8 Tg dry biomass that accounted for 92%of all biomass
consumption and released 92%ofCO2, 96%of PM2.5, and 93%of BC emissions accordingly.

Fire emissions during the 2019–2020 season also revealed dramatic temporal patterns inmonthly, weekly,
daily, and hourly variations (figure 6). The bushfires inNovember 2019,December 2019, and January 2020
separately contributed to 26%, 45%, and 29%of seasonal biomass consumption and emissions. During the
week from29December 2019 to 4 January 2020,fires consumed a total of∼35 Tg dry biomass and released
∼55±4.3 TgCO2,∼0.54±0.4 Tg PM2.5, and 0.019±0.012 Tg BC,which accounted for∼31%of the total
biomass consumption and emissions released during the 2019–2020 season. The three highest daily amounts of
biomass consumed andfire emissions during the season occurred on 30 and 31December 2019 and 4 January
2020, which accounted for 22%of seasonal fire emissions. Themost severe fire was on 4 January with a biomass
consumption of∼11 Tg and emissions of∼17±1.4 TgCO2,∼0.2±0.15 Tg PM2.5, and∼0.006±0.004 Tg
BC,which accounted for∼10%of seasonal biomass consumption and fire emissions. The diurnal variation of
fire emissions revealed thatmost offire smokewas emitted during daytime and fire emissions peaked generally
in the early afternoon (1:00 pm–3:00 pm) during theweek (figure 7). For instance, fires during the peaking hour
(2:00 pm) on 4 January 2020 accounted for 14.5%of the daily total biomass consumption and emissions or 1.4%
of the total emissions of the entire season.Nevertheless, nighttime fires were equally remarkable; half of daily
emissions on two severe days inDecember (30 and 31)were emitted during night.

Figure 5. Spatial pattern of biomass consumption and fire emissions across the TBMF (temperate broadleaf andmixed forest, in green
color) andMFWS (mediterranean forest, woodland and scrub, in light green) ecoregions in 0.25° grids. (A)Total consumed dry
biomass, (B)CO2, (C)PM2.5, and (D)BC.Note the legends in (A)–(D) are on a logarithmic scale.

Table 1.The total biomass consumption and fire emissions in the TBMF (temperate broadleaf andmixed forest) and
MFWS (mediterranean forest, woodland and scrub) ecoregions during the 2019–2020fire season. The number
after±denotes 1σuncertainty of emissions (seeMethods for details of uncertainty).

TBMF MFWS

Emissions (Tg) Forest Non-forest Forest Non-forest Total

DryMass 81.3 6.3 22.8 1.9 112.3

CO2 127.6±10.6 10.4±0.6 37.8±2.1 2.8±0.3 178.6±13.6
PM2.5 1.5±1.17 0.04±0.02 0.16±0.08 0.01±0.007 1.71±1.28
BC 0.045±0.029 0.003±0.002 0.012±0.008 0.001±0.0006 0.061±0.04
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3.3. Comparisonwith otherfire emissions inventories
Figure 8 shows the comparison ofmonthly total CO2 emissions across the TBMF andMFWS ecoregions. In the
threemonths fromNovember 2019 to January 2020, the AHI-VIIRS FRP basedmonthlyCO2 (from this study)
was 44.4±3.4 Tg (November), 82.2±6.3 Tg (December), and 52±3.9 Tg (January), with a total of
178.6±13.6 Tg for thewhole period. In comparisonwith other inventories, the totalmass of the AHI-VIIRS
FRP basedCO2was approximately 20%higher than FINNv1.5 (150Tg) but differed by a factor of 2–3 from
GFASv1.2 (358Tg), GFED4s (439Tg), FINNv2.4 (489Tg), and Shiraishi andHirata 2021 (574Tg). In individual
months,monthly CO2 emissions from this study and other inventories all showed the highest and lowest
estimates inDecember 2019 and January 2020, respectively. Among themonthly estimates, GFED4s reported
the highest value inNovember (171Tg) andDecember (252Tg, similar to Shiraishi andHirata 2021 (268Tg))
2019 but the lowest in January 2020 (16 Tg).

4.Discussion

4.1. Fire intensity andfire emissions
Record-breaking fire intensity as well as carbon and aerosol emissions can occur under awarming climate. This
was demonstrated in the 2019–2020 bushfires. The year 2019 inAustralia was the driest andwarmest year on
record because of a strong, positive IndianOceanDipole and heatwaves (ABM2019). Across Australia,most
areas experienced a temperature of 1.5° above the annualmean and a total rainfall 40% lower than average,
resulting in a yearlong drought, particularly in the TBMF andMFWS ecoregions (ABM2019). The long-term
drought substantially reduced themoisture content of live fuel and dead coarse woody fuel, greatly increasing
fuel availability and flammability in temperate eucalyptus forest (Nolan et al 2020). The abnormally high
temperatures also significantly increased fuel aridity (Flannigan et al 2015) and elevated the frequency and

Figure 6.Daily total dry biomass consumption and fire emissions across the TBMF (temperate broadleaf andmixed forest) and
MFWS (mediterranean forest, woodland and scrub) ecoregions during the season fromNovember 2019 to January 2020. (A)Dry
biomass consumption, (B)CO2, (C)PM2.5, and (D)BC. The shading area denotes±1σ uncertainty (seeMethods for details of
uncertainty).
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severity offire weather. As a result, 60%of Australia’s land had experienced record-breaking fire danger
(ABM2019) andfires even substantially expanded to the rainforest (figure 5)where fire activity is limited, with a
return interval of>100 years (Murphy et al 2013). Beyond climate anomalies, logging and other forest
treatments also largely increased surface fuel loads, which contributed tofire severity and elevated the possibility
offire spreading from logged areas to adjacent undisturbed forests (Lindenmayer et al 2020).

The observations frommultiple satellites quantitatively revealed the extrememagnitude of fire intensity as
well as carbon and aerosol emissions that could be reached in extreme climate conditions. Long-termMODIS

Figure 7.Hourly fire emissions in theweek from29December 2019 to 4 January 2020 based onAHI andVIIRS observations. (A)Dry
biomass consumption; (B)CO2 emissions; (C)PM2.5 emissions; and (D)BCemissions.

Figure 8.Monthly totalmass of CO2 emissions from this study and other emissions estimates: FINNv1.5, FINNv2.4, GFASv1.2,
GFED4s, and Shiraishi andHirata 2021.Note thatmonthly CO2 in the Shiraishi andHirata 2021was aggregated from state-level
values inNew SouthWales, Victoria, Tasmania, SouthAustralia, andQueensland. The error bar denotes 1σuncertainty of ourCO2

emissions estimates due to emission factors.
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FRP, the best and longest satellite-observed fire data, quantified the extreme anomaly of the 2019–2020
bushfires. The number offire observations and summed FRP across the TBMFdiffered from themeans for the
past two decades by one order ofmagnitude, andwere higher by a factor of two than the second-largest fire
season (2002–2003) on the record, which indicates the extremely abnormal extent of actively burning fires and
emitted radiative energy. The extreme fire intensity in a single day occurred on 4 January 2020, where the
number offire observations and summed FRPwere 30%and 160%higher than themeans for the past two
decades, respectively. Furthermore, the large number of extremely intense fire observations also demonstrated
the extreme-intensity characteristics of the 2019–2020 bushfires (figure 4). The number in the TBMF ecoregion
was one order ofmagnitude larger in the 2019–2020 season than in the past two decades.Moreover, the
saturated fire observations that indicate themuch extremer intensity of fires were rarely seen in the past seasons
but accounted for nearly 30%of all extreme FRP observations in the 2019–2020 season across the TBMF
ecoregion. These extreme fires strongly imply substantially powerful disturbances to ecosystems (Ward et al
2020).

In the TGSS andDXES ecoregions, however, strong positive anomalies offire number and intensity were not
observed in the 2019–2020fire season despite thewidespread severfire weather. Thefire activity in these two
ecoregions, especially DXES, was lower than themean of past seasons. Theweakenedfire activity is likely
explained by decreased fuel availability. Across these two regions, fuels aremainly savanna tall grasses (in TGSS)
and sparse shrubs and grasses (inDXES) that usually accumulate duringwet season before burning in dry season
(Pausas andRibeiro 2013). The year-long drought across the Australia continent likely limited vegetation
growth before the 2019–2020fire season (ABM2019), which substantially reduced available fuels to burn.

The biomass consumption as well as greenhouse gases and aerosol emissions from the 2019–2020 bushfires
are extremely high as observed byVIIRS andAHI. Because biomass consumption andfire emissions are a linear
function offire radiative energy (Freeborn et al 2011), their anomalies of extremities should be very similar as the
summed FRP in the 2019–2020fire season that was larger by an order ofmagnitude than the 2002–2019mean
(figure 2). Themagnitude offire emissions released from the 2019–2020 bushfires is further demonstrated by
comparing it withAustralia’s industrial greenhouse gas emissions and other important fire emissions sources
globally. First, the total amount of CO2 emissions from the 2019–2020 bushfires in TBMF andMFWS is as high
as 35±3%ofAustralia’s annual CO2-equivalent emissions from all sectors for the year from July 2019 to June
2020 (513.4 Tg), and even higher than that of any industrial sectors (e.g., energy-related electricity and transport
emissions) (ADISER 2020). Carbon emissions emitted fromnatural wildfires are not considered as a net source
of carbon usually as post-fire vegetation regrowth sequesters carbon back from the atmosphere over time
(Landry andMatthews 2017). Nevertheless, the amount offire-releasedCO2 emissions is approximately a third
of Australia’s national CO2-equivalent emissions in 2005, which is considered as the baseline greenhouse
emissions for Australia in the Paris Agreement with the goal of reducing greenhouse emissions (ADISER 2020).
Clearly,fire emissions are one important source of atmospheric greenhouse gas emissions in short term andwill
likely increase because of the projected increasing fire activity inwarming climate scenarios ( Landry and
Matthews 2017, Abatzoglou et al 2018). Second, Australia’s 2019–2020 bushfire-releasedCO2 emissions are very
close to theCO2 emissions (180Tg) fromwildfires across thewesternUnited States in theworst 2020fire season
(van derWerf et al 2017).Moreover, the 2019–2020CO2 emissions are∼37%of theCO2 emissions from
deforestation fires across the Amazon rainforest in 2019, which has been considered as theworstfire season in
the past decade (Escobar 2019).

Moreover, biomass burningwasmuch severe on hourly, daily, andweekly time scales during the fire season.
Generally, the temporal pattern of the daily fire emissions in the 2019–2020fire seasonmatches that of the
satellite-based absorbing aerosol index (AAI) thatmeasures the concentration of absorbing aerosols infire
smoke (Khaykin et al 2020), with the highest peaks during theweek from30December 2019 to 4 January 2020
(figure 6). During this week, the bushfires accounted formore than 30%of the total biomass consumption and
emissions during the entire season, which likely explains the fast elevated ground-measured PM2.5 (50–100μg
m−3 averaged by population, Borchers Arriagada et al 2020) and the rapid increase of fire-smoke-related
hospitalizations across southeastern Australia in the followingweek (Johnston et al 2021)when emissionswere
transported to populated areas. The largest daily emission, which occurred on 4 January 2020, was∼17 TgCO2,
∼0.2 Tg PM2.5, and∼0.006 Tg BC that explained∼10%of the total emissions for the entire season, with the
most extremely intense fire observations. On this day,moreover, the hourly fire emissions during themost
severe hour accounted for 1.4%of the seasonal total emissions. The substantial amounts of energy and
emissions released from these extreme fires during theweekwith the largest daily and hourlyfire emissions are
likely themajor forcing agents that caused the occurrence of 18 observed pyroCbs (Kablick et al 2020) as well as
the record-breaking injection height and spread distance of smoke plumes during the same period (Boone et al
2020, Kablick et al 2020, Khaykin et al 2020,Hirsch andKoren 2021).
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4.2. Implications offire emissions for smokemonitoring
The extremely large amount offire emissions has strong implications formonitoring smoke aerosols. The
amount of aerosols is inferred typically from satellite-based and/or ground-based aerosol optical depth (AOD)
thatmeasures the degree towhich aerosols cause attenuation of sunlight and implies air pollution, with a normal

Figure 9.Aerosol optical depth (AOD) in southeastern Australia on 4 January 2020. The right panel shows spatial details of AODover
the region highlighted in pink in the left panel. In TBMF (temperate broadleaf andmixed forest) ecoregion, AOD is on average 12.8
(much greater than 5.0 - themaximumAOD thatmost satellites could retrieve) in 18%of actively burning fire areas in TBMFon 4
January 2020.Note that AODwas calculated fromPM2.5 emissionflux at a spatial resolution of 375mby following themethod
developed byHoff andChristopher (Hoff andChristopher 2009), with a typical extinction coefficient of 3.14m2 g−1 and an
integration time of 300 seconds. PM2.5 emissionfluxwas computed using the 375mVIIRS FRP.

Figure 10.Comparison of our fusedAHI-VIIRS FRP and daily FREwith theMODIS based FRP and FRE inGFASv1.2. (A)Time series
of rawAHI FRP (green), the fusedAHI-VIIRS FRP (orange), andGFASv1.2 FRP (blue). VIIRS FRP fromNOAA-20 andNPP are also
added for comparison; (B)Daily FRE calculated from fusedAHI-VIIRS FRP (orange) andGFASv1.2 (blue). For the purpose of
visualization, FRP and FRE values after 4 January 2020 are not shown as they are relatively very small, be seen infigure S1.
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value range of 0–1.0 (up to 5.0 for satellites and 7.0 for AERONET) (Levy et al 2013). Satellite sensors that retrieve
AODusing visible wavelengths (e.g.,MODIS, VIIRS, andAERONET) usually fail to detect AOD in extreme
conditionswhen highly concentrated aerosols (e.g., thick fire smoke plumes and pyroCbs) absorb nearly all the
incoming sunlight at visible wavelengths and scatter little back to sensors (Levy et al 2013). Until the 2019–2020
extreme bushfires, one could not imagine that emissions could be of this scale resulting in such highAODs. The
PM2.5 emissions from the 2019–2020 bushfires enhanced our knowledge of extremely high AOD. Based on the
PM2.5 emissions in this study and the AODcalculationmethod employed bymany researchers (i.e., equation 10
inHoff andChristopher (Hoff andChristopher 2009), with a typical extinction coefficient of 3.14m2 g−1 for
smoke aerosol (Dobbins et al 1994) and an integration time of 300 s), we revealed that AODwas on average 12.8
(much greater than 5.0) in 18%of actively burning fire areas in TBMFon themost severe day 4 January 2020
(figure 9). This is far beyond the observation capabilities of visible wavelength-based instruments.Meanwhile,
the ultra-violet (UV)-based instrument (i.e., OzoneMonitoring Instrument orOMI onAura) reported a
maximumAODof 13.0 (personal communicationwithDrHiren T. Jethva). Therefore, this study suggests that
instruments retrieving AOD in different wavelength regions are needed to understand the physical and optical
properties of smoke plumes in extreme fires like the 2019–2020 bushfires.

4.3. Uncertainty inAHI-VIIRS FRP-based emissions estimates
The uncertainty of the FRP-based emissions estimates in this study is associatedwith potential uncertainties of
FRE estimate, FBCC value, and emissions factors. The FRE estimate can be affected by the omission errors of
AHIfire detections due to two factors: (1)missing observations of small and/or cool fires relative toVIIRS, and
(2) obscuration of clouds and thick smoke. The effect of thefirst factor wasmitigated by calibrating AHI FRP
against VIIRS (equation (2), illustrated infigure S3). The FRP observation gaps caused by clouds and smokes
were interpolated using the closest valid FRP observations in reconstructing FRP diurnal cycle. The great
agreement between the fused FRP diurnal cycles andVIIRS FRP suggests that our FRE estimates are reliable with
high accuracy (figure 10(a)). This is further discussed in comparisonwithGFASv1.2 emissions (see section 4.4).

Uncertainty in emissions estimation could also come fromFREbiomass combustion coefficient (FBCC) but
it is likely limited. FBCCwas initially derived as a value of 0.368 kgMJ−1 in a controlled field fire experiment that
was conducted to explore the relationship between rate of biomass consumption andfire-emitted instantaneous
radiative energy (Wooster et al 2005). Several recent studies further investigated FBCC in landscapewildfires
(Konovalov et al 2014, Li et al 2018a,McCarley et al 2020). Konovalov et al (2014) reported an FBCCof 0.38–0.40
kgMJ−1 for boreal forestfires and 0.44–0.45 kgMJ−1 for grassfires in Siberia usingMODIS FRE and satellite-
basedCOandAODobservations. Li et al (2018a) reported an FBCCof 0.32 kgMJ−1 using FRE fromMODIS
andGOES (theGeostationaryOperational Environmental Satellite) and 30mLandsat-based fuel consumption
over hundreds of wildfires acrossUnited States. Similarly,McCarley et al (2020) reported an FBCCof 0.367 kg
MJ−1 usingMODIS FRE and Lidar-based fuel consumption over twowildfires in thewesternUnited States.
Nevertheless, comparison between the controlled-experiments and the actual wildfires show that the FBCC
difference is small in temperate forest (<12%, Li et al 2018a,McCarley et al 2020). Therefore, we believe that it is
reasonable to use the experiment-based FBCC (0.368 kgMJ−1) for calculating emissions inAustralia temperate
forestfires and that FBCC-caused uncertainty in emissions estimation should be relatively limited.

Themain source of uncertainty in our emissions estimates is likely fromuncertainties in emission factors.
This study used emission factors compiled recently by Andreae (Andreae 2019) based on emissions factors for
globalfires, including Australiafires (Guérette et al 2018). Given that the emission factor (e.g., g of PM2.5 per kg
of biomass consumption) of a specific emissions species is derived usually as an average of reported emission
factors fromdifferent studies, standard deviation (σ) is used as ameasure of the uncertainty. In temperate forest
where the 2019–2020 bushfires burnedmostly, 1σ explains 8%, 78%, and 65% emission factors of CO2

(1570±130 g kg−1), PM2.5 (18.5±14.4 g kg−1) andBC (0.55±0.36 g kg−1), respectively. Although
Andreae’s emission factors are average values, the CO2 emission factor is very close to the airborne-based and
ground-basedCO2 emission factor for temperate forest across southeastern Australia (Guérette et al 2018). As a
result, the total emissionmass varies from165.4–192.6 Tg for CO2, 0.43–3.03 Tg for PM2.5, and 0.021–0.101 Tg
for BC in the 2019–2020fire season. It is clear that PM2.5 andBChavemuch larger uncertainties thanCO2,
which is attributed partly to the fact thatmeasuring the emissions factors of aerosol emissions (e.g., PM2.5 and
BC) ismuchmore complex than gaseous emissions (e.g., CO2) (Andreae 2019).

4.4. Sources of discrepancies among various emissions estimation
Large discrepancies inCO2 emissions estimates for the 2019–2020 bushfires among existing emissions
inventories indicate challenges in emissions estimation. First, theGFASv1.2 calculates emissions in the sameway
(equations (5) and (6)) as this study but uses 1 kmMODIS FRP (Kaiser et al 2012). Because similar CO2

emissions factors were used (difference<5%), the discrepancy betweenGFASv1.2 and this study is attributed to
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the FRE estimates and FBCC values. During the study period, theMODIS FRP based FRE (372 PJ) inGFASv1.2
was 22%higher than our FRE (305 PJ) calculated from the fused diurnal AHI-VIIRS FRP even thoughMODIS
FRP (Figure S1) is∼50% lower thanVIIRS FRP. Further, GFASv1.2 uses an FBCCof 0.49 kgMJ−1 for temperate
forests, which is 33%higher than the FBCC (0.368 kgMJ−1) used in this study. These two sources can result in a
CO2 emission difference by a factor of 1.62, which is very close to the difference presented infigure 8. It should
be noted that accurate FRE estimation requires FRP diurnal cycles. However, theGFASv1.2 calculates FRE using
dailymean FRP averaged from the daily up-to-fourMODIS FRP, which is overestimated generally (figure 10).
Specifically, GFASv1.2 overestimated FRP in themorning and evening but underestimated in the afternoon
relative to the AHI-VIIRS FRP (figure 10(A)). Although some compensation fromover and under estimations,
GFASv1.2 highly overestimated FRP in themorning and evening, which lead to the overestimation of daily FRE
inmost days (figure 10(b)).Moreover, FBCC values used inGFASv1.2were derived by relatingMODIS FRP to
the biomass consumption froman earlier version ofGFED (GFEDv3), which is subject to the accuracy of
GFEDv3.

Second, theCO2 estimates from the conventionalmethod (burned area, fuel loading, combustion
completeness and emission factors) (i.e., FINNv2.4 and Shiraishi andHirata 2021) are overall larger than the
FRP-basedCO2 estimates (i.e., this study andGFASv1.2), but show large discrepancies among themselves
(figure 8). Diagnosis of the difference between the FRP-based and the conventionalmethod estimates is difficult
because these twomethods use different input parameters. The twomethods are connectedwhen FRE is
considered as a function of burned area, fuel loadings, and combustion completeness, which highlights the
advantage of the FRP-basedmethod as it bypasses the uncertainties from three parameters in the conventional
method. Indeed, the input parameters in the conventionalmethod are themain sources of uncertainties in
emissions estimates , as demonstrated in Liu et al (2020). For example, although the 1 kmMODIS collection 6
activefire detectionwas used, Shiraishi andHirata 2021 reports a total burned area of 86,000 km2,
approximately two times of FINNv1.5 (40,300 km2), across the study area. This large difference is because
FINNv1.5 assumes a burned area of 0.75 km2 for each 1 kmMODIS fire detection and further scales it using
vegetation cover fraction (Wiedinmyer et al 2011), while Shiraishi andHirata 2021 assumes a burned area of 1
km2 for eachMODIS fire detection (Shiraishi andHirata 2021). These assumptions ignore the physical principle
of satellitefire detection algorithm, which allowsMODIS to detect flamingfires (e.g., 1000K)with a size of
0.0001 km2 (0.01% fraction of a 1 kmpixel) (Giglio et al 2003).When the 375mVIIRS activefire detections are
also included to estimate burned area by FINN2.4, the total burned area fromFINNv2.4 increases by 280%
(relative to FINNv1.5) to 153,750 km2,∼80%higher than that fromShiraishi andHirata 2021.Nevertheless, the
FINNv2.4CO2mass is still 15% lower than the Shiraishi andHirata 2021 estimation.

The fuel loading is certainly anothermajor source of difference CO2 estimates between FINNand Shiraisih
&Hirata 2021. The FINNuses a static fuel loading lookup table summarized for globalfires frompublished
results (Wiedinmyer et al 2011), while Shiraishi andHirata 2021 calculated fuel loadings from two global AGB
maps (Shiraishi andHirata 2021). Statistic fuel loadings do not consider spatial heterogeneity of fuels and also
fail to account for fuel changes due to disturbances and vegetation regrowth (Gale et al 2021). The global AGB
maps from satellite observations likely have limited capability ofmapping surface dead and live fuel, which
played a key role in the 2019–2020 bushfires (Nolan et al 2020), and their accuracy varies largelywith availability
of reference data and remains to be validated inmany regions (Quegan et al 2017).Moreover, combustion
completeness is difficult tomeasure for largewildfires especially as it can vary largely within the samefirewith
differentfire behaviors (i.e.,fire intensity and spreading speed) and fuelmoisture (Veraverbeke andHook 2013).

Third, it is difficult to pinpoint the potential factors that lead to overall largerGFED4s emissions than other
inventories due to the lack of published or documented information on howGFED4s emissions of 2017 onward
are computed exactly. According to the readme ofGFED4 (https://www.geo.vu.nl/∼gwerf/GFED/GFED4/
Readme.pdf, last accessed on 30August 2021), itmerelymentions that GFED4s emissions after 2016 are
generated usingMODISfire detections and empirical relationship betweenfire detections and historical
GFED4s emissions. It is unknown if number offire detections or FRP are used. Besides, fuel loading is another
factor affecting emissions estimates. Nevertheless, it is interesting that GFED4sCO2 is the lowest, differing from
others by a factor of 3–10, in January 2020, although it is higher than the others for thewhole study period.

The large discrepancies among variousmethods suggest that improving parameters in emissions estimation
ismost critical. For the FRP-based approach, as proposed in this study, the fusion of high spatial resolutionfire
observations frompolar-orbiting satellites with high temporal resolution data fromgeostationary satellites is
able to reconstruct diurnal FRP cycles and enhance FRE calculations, which can greatly reduce uncertainties in
fire emissions estimates. For the conventionalmethod, burned area can be accuratelymapped using high
resolution satellite data (e.g., Landsat-8 and Sentinel-2) and fuel loading can be reliably quantified by combining
field-based datawith the latest high resolution Lidar observations of forest structures (e.g., Global Ecosystem
Dynamics Investigation (GEDI), Dubayah et al 2020).
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To fully understand the accuracy offire emissions estimation, it is urgent to develop robust validation
approaches, which is very challenging. The commonpractice of validating fire emissions estimates is to simulate
aerosols (e.g., AODandPM2.5) using chemical transportmodels (CTMs)with fire emissions as the input and
then compare the simulated valueswith the satellite-based and/or ground-based aerosol observations.
However, such a validation practice is subject to uncertainties inmodel simulation of aerosols (Curci et al 2015).
Alternatively, a direct comparison offire emission estimates with high-resolution satellite observations offire-
released trace gases is of large potential if individual wildfires with fresh smoke plumes can be delineated (Li et al
2020b).

In summary, this study revealed themagnitude and intensity of an extreme fire event by (1) examining the
fire intensity characteristics using the long-termMODIS FRP observations, and (2) quantifying the consumed
biomass and released greenhouse gases and aerosol emissions by fusing the highest-temporal-resolution AHI
FRP andfinest-spatial-resolutionVIIRS FRP. Thefire intensity, biomass consumption, and emissions presented
in this study are expected to complement other characteristics (e.g.,fire area and smoke plumes) of the
2019–2020 bushfires and provide invaluable information formaking sound policy for forest fuelmanagement
and emissions budget and understanding the impacts offire emissions on air quality and climate. Because the
frequency and intensity of extreme climate events have increased rapidly andwill continue to increase under
changing climatic conditions (Beniston et al 2007, Rummukainen 2012), our results for Australia’s 2019–2020
bushfires provide new insight into the behavior offire intensity and biomass-burning emissions, which ismore
critical than that of regularfire emissions.
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